Role of Egg-Laying Experience in Avoidance of Superparasitism by Fruit Fly Parasitoid Fopius arisanus (Hymenoptera: Braconidae)

Author(s):  
Xin-Geng Wang ◽  
Russell H. Messing
Keyword(s):  
2021 ◽  
Author(s):  
Katja M Hoedjes ◽  
Hristina Kostic ◽  
Thomas Flatt ◽  
Laurent Keller

ABSTRACTStill little is understood about the nucleotide changes that underlie variation in complex phenotypes. Variation in the PPARγ-homolog Eip75B has previously been suggested to be associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adults affects lifespan, egg laying rate and egg volume. To then test the effect of a naturally occurring SNP variant within a cis-regulatory domain of Eip75B, we screened wildtype lines with alternative alleles and conducted precise genome editing using CRISPR/Cas9. These experiments revealed that this natural polymorphism has a significant effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. These results provide a rare functional validation for the role of a natural allelic variant in adaptation of life-history traits directly linked to fitness at the single nucleotide level.


2021 ◽  
pp. 1-14
Author(s):  
M. Reyes-Hernández ◽  
G. Córdova-García ◽  
F. Díaz-Fleischer ◽  
N. Flores-Estévez ◽  
D. Pérez-Staples

Abstract Mating and receiving ejaculate can alter female insect physiology and postcopulatory behaviour. During mating, females receive both internal and external stimuli and different components in the ejaculate. In insects, these components consist mostly of sperm and male accessory gland secretions. Some of the most important changes associated with receiving male accessory gland secretions are a reduction in female sexual receptivity and an increase in oviposition. However, a clear function for these molecules has not been found in the Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae). Here, we tested how the stimulus of mating, receiving a full ejaculate, or only receiving accessory gland secretions can influence ovarian development and oviposition. Our results indicate that the stimulus of mating per se is enough to induce oviposition and increase egg laying in females even if ejaculate is not received, whereas receiving only accessory gland secretions does not increase ovarian development and is not enough to induce oviposition or increase egg production. Further research on the internal and external copulatory courtship of A. ludens will increase our understanding of the role of these secretions in stimulating oviposition independent of ejaculate effects. A biological function for male accessory gland secretions on female behaviour for A. ludens still needs to be found.


2021 ◽  
pp. 074873042199811
Author(s):  
Franziska Ruf ◽  
Oliver Mitesser ◽  
Simon Tii Mungwa ◽  
Melanie Horn ◽  
Dirk Rieger ◽  
...  

The adaptive significance of adjusting behavioral activities to the right time of the day seems obvious. Laboratory studies implicated an important role of circadian clocks in behavioral timing and rhythmicity. Yet, recent studies on clock-mutant animals questioned this importance under more naturalistic settings, as various clock mutants showed nearly normal diel activity rhythms under seminatural zeitgeber conditions. We here report evidence that proper timing of eclosion, a vital behavior of the fruit fly Drosophila melanogaster, requires a functional molecular clock under quasi-natural conditions. In contrast to wild-type flies, period01 mutants with a defective molecular clock showed impaired rhythmicity and gating in a temperate environment even in the presence of a full complement of abiotic zeitgebers. Although period01 mutants still eclosed during a certain time window during the day, this time window was much broader and loosely defined, and rhythmicity was lower or lost as classified by various statistical measures. Moreover, peak eclosion time became more susceptible to variable day-to-day changes of light. In contrast, flies with impaired peptidergic interclock signaling ( Pdf01 and han5304 PDF receptor mutants) eclosed mostly rhythmically with normal gate sizes, similar to wild-type controls. Our results suggest that the presence of natural zeitgebers is not sufficient, and a functional molecular clock is required to induce stable temporal eclosion patterns in flies under temperate conditions with considerable day-to-day variation in light intensity and temperature. Temperate zeitgebers are, however, sufficient to functionally rescue a loss of PDF-mediated clock-internal and -output signaling


1999 ◽  
Vol 15 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Renato C Bautista ◽  
Noboru Mochizuki ◽  
John P Spencer ◽  
Ernest J Harris ◽  
Dwayne M Ichimura

2021 ◽  
Author(s):  
Bailly Tiphaine ◽  
Philip Kohlmeier ◽  
Rampal Etienne ◽  
Bregje Wertheim ◽  
Jean-Christophe Billeter

Being part of a group facilitates cooperation between group members, but also creates competition for limited resources. This conundrum is problematic for gravid females who benefit from being in a group, but whose future offspring may struggle for access to nutrition in larger groups. Females should thus modulate their reproductive output depending on their social context. Although social-context dependent modulation of reproduction is documented in a broad range of species, its underlying mechanisms and functions are poorly understood. In the fruit fly Drosophila melanogaster, females actively attract conspecifics to lay eggs on the same resources, generating groups in which individuals may cooperate or compete. The tractability of the genetics of this species allows dissecting the mechanisms underlying physiological adaptation to their social context. Here, we show that females produce eggs increasingly faster as group size increases. By laying eggs faster in group than alone, females appear to reduce competition between offspring and increase their likelihood of survival. In addition, females in a group lay their eggs during the light phase of the day, while isolated females lay them during the night. We show that responses to the presence of others are determined by vision through the motion detection pathway and that flies from any sex, mating status or species can trigger these responses. The mechanisms of this modulation of egg-laying by group is connected to a lifting of the inhibition of light on oogenesis and egg-laying by stimulating hormonal pathways involving juvenile hormone. Because modulation of reproduction by social context is a hallmark of animals with higher levels of sociality, our findings represent a protosocial mechanism in a species considered solitary that may have been the target of selection for the evolution of more complex social systems.


2002 ◽  
Vol 205 (5) ◽  
pp. 591-602 ◽  
Author(s):  
Maria del Pilar Corena ◽  
Theresa J. Seron ◽  
Herm K. Lehman ◽  
Judith D. Ochrietor ◽  
Andrea Kohn ◽  
...  

SUMMARYThe larval mosquito midgut exhibits one of the highest pH values known in a biological system. While the pH inside the posterior midgut and gastric caeca ranges between 7.0 and 8.0, the pH inside the anterior midgut is close to 11.0. Alkalization is likely to involve bicarbonate/carbonate ions. These ions are produced in vivo by the enzymatic action of carbonic anhydrase. The purpose of this study was to investigate the role of this enzyme in the alkalization mechanism, to establish its presence and localization in the midgut of larval Aedes aegypti and to clone and characterize its cDNA. Here, we report the physiological demonstration of the involvement of carbonic anhydrase in midgut alkalization. Histochemistry and in situ hybridization showed that the enzyme appears to be localized throughout the midgut, although preferentially in the gastric caeca and posterior regions with specific cellular heterogeneity. Furthermore, we report the cloning and localization of the first carbonic anhydrase from mosquito larval midgut. A cDNA clone from Aedes aegypti larval midgut revealed sequence homology to α-carbonic anhydrases from vertebrates. Bioinformatics indicates the presence of at least six carbonic anhydrases or closely related genes in the genome of another dipteran, the fruit fly Drosophila melanogaster. Molecular analyses suggest that the larval mosquito may also possess multiple forms.


2019 ◽  
Vol 19 (S1) ◽  
Author(s):  
María Laura Juárez ◽  
Lida Elena Pimper ◽  
Guillermo Enrique Bachmann ◽  
Claudia Alejandra Conte ◽  
María Josefina Ruiz ◽  
...  

Abstract Background The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males. Results AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males’ survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet. Conclusions Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males’ fitness, although the physiological mechanisms still need further studies.


Sign in / Sign up

Export Citation Format

Share Document